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Abstract — The circuit design, fabrication, and performance of ultra-

high-frequency dividers with buffer FET logic (BFL) circuits are described.

Using air-bridge technology and a new, self-aligned-gate, GaAs FET

process, called advanced SAINT, which avoids excess gate metal overlap

on the dielectric film, 1O.6-GHZ operation at 258 mW is achieved. This

performance is made possible by a reduction of gate and interconnection

parasitic capacitance. Furthermore, the Possibility of operation above 20

GHr for GaAs MESFET frequency dividers is predicted on the basis of

circuit optimization and FET improvements including parasitic capacitance

reduction and transconductance enhancement.

I. INTRODUCTION

H IGH-SPEED GaAs LSI’S, such as the 16-kbit SRAM

[1] and 2-Gbit/s time switch [2] have been developed

with SAINT FET’s [3]. GRAS MSI’S and SS1’s have great

potential in satellite and microwave communications sys-

tems because of their ultra-high-frequency operation, low

power consumption, and radiation hardness. A frequency

divider -operating at a higher frequency and with lower

power is required to simplify the phase-locked loop for the

local oscillator circuits in such systems.

Various circuit configurations for GaAs ultra-high-

frequency dividers, such as buffered FET Logic (BFL) [4],

source-coupled FET logic (SCFL) [5], and direct-coupled

FET logic (DCFL) [6], have previously been investigated.

BFL circuits have the advantages of high-speed operation

and simple configuration, consisting of only MESFETS,

because diodes are constructed by the same MESFET’S

with connection between the source and drain. In addition,

BFL circuits have high driving capability.

In this paper, circuit design, fabrication, and perfor-

mance improvements of a GaAs BFL ultra-high-frequency

divider are described. As a result of ,circuit optimization, a

binary frequency divider using BFL circuits with a source

follower proved to operate faster than one having only

level shift diodes. Therefore, the former circuit configura-

tion was adopted for circuit fabrication. For parasitic

capacitance reduction, a new FET fabrication process,

called advanced SAINT [7], has been developed. It utilizes

a self-aligned gate formation technology so as to avoid the

excess gate metal overlap upon dielectric film that causes

parasitic capacitance in conventional SAINT FET’s [3].

The second-level interconnection lines have been con-
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strutted by air-bridge technology, minimizing parasitic

capacitance between lines.

Using these technologies, BFL M/S binary frequency

dividers were fabricated with 0.5-pm-gate FET’s and oper-

ated at 10.6 GHz with 258-mW power dissipation. In

addition, the potential operation of GRAS MESFET static

frequency dividers above 20 GHz is also described.

II. CIRCUIT DESIGN

Two types of BFL circuits consisting of different output

circuit configurations (A and B) [4] were studied. These

circuit configurations are shown in Fig. 1. The type A

circuit uses a source follower in the level shift position to

ensure a large driving capability. The type B circuit uses

only diodes in the level shift position. These circuits were

applied to a two-level series gating master–slave flip-flop

circuit considered to be capable of the highest frequency

operation. High-frequency operation of the binary fre-

quency dividers with BFL circuits A and B were simulated

under standard supply voltages of VDD = 3 V and V~~ = – 2
V by improved SPICE H, using FET and diode models

including parasitic capacitance [8]. FET gate parasitic

capacitance CP was simply defined as parallel capacitance

to gate–source capacitance Cg, or gate–drain capacitance

Cgd. The FET parameters used in the simulation were a

gate length Lg of 0.5 pm, a threshold voltage VA of – 1 V,

a transconductance g~ of 200 mS/mm, and a gate para-

sitic capacitance CP of 3 fF/40-pm gate width. Intercon-

nection capacitance was not included.

Simulation results indicating the dependence of maxi-

mum operation frequency ~Cma on driver FET gate width

Wg are shown in Fig. 1. It can be seen that the frequency

divider constructed with type A BFL circuits, permitting

large driving capability, allows an approximately 1-GHz

improvement in operation frequency compared to type B

BFL circuits, and that the maximum operation frequency

shows a saturation tendency at W~ = 30–40 pm. The power

dissipation of type A circuits is slightly higher than that of

type B circuits. As shown in Fig. 2, type A BFL circuits for

binary frequency dividers were used in our experiments,

along with a W~ of 40 pm. The following calculations and

experiments were carried out using the type A circuit.

Fig. 3 shows circuit simulation results of the dependence

of the maximum operation frequency on FET gate para-

sitic capacitance CP using standard supply voltages, with

and without interconnection capacitance in the case of
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Fig. 1. Maximum operation frequency dependence of two types of
frequency dividers on driver FET gate width. Type A BFL circuit uses a

source follower in the level shift position to ensure a large dfiving

capability. Type B BFE circuit uses only diodes in the level shift

position.
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Fig. 2. Schematic diagram of a binary frequency divider with output

buffers using type A BFL circtnts. FET gate width is 40 pm except

FET’s with 20-pm gate width denoted as ~ W’.

type A circuits, as shown in Fig. 2. Other FET parameters

were the same as those used in Fig. 1 except for a gate

width of 40 pm. In theconventional SAINT FET with the

excess gate overlap, CP was estimated to be 16 flF/40-pm

gate width as measured from the frequency divider. It is

expected that the reduction of gate and interconnection

parasitic capacitance will be remarkably effective for

high-frequency operation.
Maximum operation frequency dependence on FET

transconductance was simulated with reduced IFET and
interconnection parasitic capacitance under standard

supply voltages using the type A‘ circuits shown in Fig. 2.

Calculations of 0.2-pm-gate FET’s were carried out in

addition to the FET parameters used in Fig. 1. ‘As shown

in Fig. 4, a maximum operation frequency higher than 20

GHz is predicted at a gate length of 0.2 pm and a

tran~conductance of 400 mS/mm, attainable by gate-length

shortening and active layer thinning.

HI. FABRICATION PROCESS

Schematic cross-sectional views of conventional and ad-

vanced SAINT FET’s are shown in Fig. 5. In the advanced

SAINT FET structure, there is no gate metal overlapping,
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Fig. 3. Simulated maximum operation frequency dependence on FET
gate parasitic capacitance with or without interconnection capacitance.

CP is defined as parallel capacitance to gate–source capacitance C& or

gate–d rain capacitance Cgd.
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Fig. 5. Cross-sectional views of (a) a conventional FET and (b) an
advanced SAINT FET.

the cause of parasitic capacitance in the conventional

SAINT FET.

The advanced SAINT fabrication process [7] is almost

the same as the conventional [3] except for gate formation.

The gate electrode formation process involves the follow-

ing steps, as shown in Fig. 6: 1) Mo and Au are deposited

onto the whole surface by sputtering (Fig. 6(a)); 2) the Au

surface is planarized by ion beam milling with a large

beam incident angle (Fig. 6(b)); and 3) using this Au

pattern as the etching mask, Mo film is selectively etched

by RIE (Fig. 6(c)). Consequently, the gate electrode is

embeldded in a self-aligned manner only in the gate contact

region. After gate formation, source and drain ohmic

electrodes were formed by AuGe/Ni deposition and

sintering.

With self-aligned gate electrode formation, FET’s having

a gate length of only 0.2 pm were successfully fabricated

withcut excess gate metal overlap on the dielectric film.

In addition to FET structural improvements, second-

level interconnection lines were constructed using “air-
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Fig. 6. Gate formation steps in the advanced SAINT FET fabrication
process.

Fig. 7. An SEM photograph of air-bridge lines and an FET.

Fig. 8. A microphotograph of a BFL M/S binary frequency divider.
Chip size is 0.87x 1 mm2.

(a)

Fig. 9.
using

(b)

Operation waveforms of a BFL M/S binary frequency divider
the following two kinds of SUDDIV voltages: (a) V.. 3 V. V.. – 2

V; ~ower dissip~tion—200 mW,’ ~~ck in~ut~9,6 “?3Hz~ ~2 V
(peafepeak), output: 4.8 GHz, and 180 mV (peal-peak); (b) V_~3,4 V,
I+s – 3.1 V, power dissipation: 258 mW, clock input: 10.6 GHz, 1,1

V(pea!-peak), output: 5.3 GHz, and 24 mV(peal-peak).

bridge” technology. Though two-level interconnection

technology, using SiN or Si02 as the interlayer is popular,

the high dielectric constant of the interlayer increases

between line capacitance and degrades IC high-frequency

performance. In order to minimize between line capaci-

tance, it is necessary to construct the second-level intercon-

nection line by air-bridge technology, which yields an ideal

interlayer dielectric constant. An SEM photograph of the

air-bridge lines and an FET is shown in Fig. 7.

Binary frequency dividers were fabricated with ad-

vanced SAINT and air-bridge technology. The gate length

and the threshold voltage of FET’s, were 0.5 ~m and – 1

V, respectively, where the transconductance was 200

mS/mm. Although the fabrication of an 0.2-pm-gate-

length FET could be achieved by using advanced SAINT

technology, the yield was insufficient for frequency divider

IC’S. To date, only the use of 0.5-pm-gate-length FET’s for

IC fabrication has been achieved. Ultra-high-frequency

divider IC’S with 0.2-pm-gate-length advanced SAINT

FET’s are now under fabrication. The circuit geometry was

optimized and made compact by symmetric circuit

arrangement and short interconnections. A photograph of
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a fabricated circuit is shown in Fig. 8. Chip size is 0.87x 1
-2

IV. MEASUREMENT RESULTS

High-frequency measurements were carried out with a

high-frequency probe card at room temperature. Under

standard biases of VDD = 3 V and V~~ = – 2 V, the maxi-

mum operation frequency was 9.6 GHz, as shown in Fig.

9(a), which corresponds to the simulation results (Figs. 3

and 4). The difference in gate parasitic capacitance CP

between the advanced SAINT and the conventional can be

estimated to be 13 fF/40~~m gate width, comparing mea-

sured maximum operation frequencies, 9’.6 GHz and 6.8

GHz, respectively, in Fig. 3. This parasitic capacitance

reduction is thought to be due to the removal of excess

gate metal overlaps by self-aligned gate electrode forma-

tion.

Under optimized supply voltages of VDD = 3.4 V at 48

mA and V~~ = – 3.1 V at 30 mA, a maximum toggle

frequency of 10.6 GHz was obtained at 258-rnW power

dissipation, as shown in Fig. 9(b) [9]. The internal logic

swing was 180 mVP_ * in the dividing operation shown in

Fig. 9(b), although the output swing was as small as 24

mVp _~ because a 50-0 load was used at the point of

measurement. A lower power dissipation will occur in the

case of a threshold voltage higher than – 1 V. The maxi-

mum toggle frequency is 4 GHz higher than that of a

frequency divider, 6.8 GHz, the latter consisting of identi-

cally sized FET’s fabricated by conventional SAINT and

conventional two-level interconnection technology with a

SiN interlayer dielectric film [10].

V. ‘CONCLUSIONS

Aiming at ultra-high-frequency operation, a frequency

divider circuit design, the reduction of FET, and intercon-

nection parasitic capacitance were studied. Advanced

SAINT, having gate electrodes witlout excess overlap upon

dielectric film, and applied air-bridge technology success-

fully reduced parasitic capacitance around the gate and

between interconnection lines. Using these technologies, at

room temperature, a BFL binary frequency divider with

0.5-pm-gate FET’s achieved 1O.6-GHZ operation at 258

mW.

Circuit simulation with empirical FET parameters pre-

dicts the possibility of high-frequency operation above 20

GHz for GRAS static frequency dividers using advanced

SAINT FET’s with an 0.2-pm gate length and air-bridge

interconnections. This divider IC using GaAs BFL circuits

can be effectively applied to satellite and microwave com-

munications.
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